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TURBULENT FLOW IN A RECTANGULAR CAVITY IN THE WALL 

OF A TWO-DIMENSIONAL CHANNEL 

Ya. I. Kabakov and A. I. Maiorova UDC 532.517.4 

Results are presented of a theoretical and experimental investigation of flow of 
a turbulent incompressible liquid over a rectangular cavity of relative depth 
I-3. 

Separated flows of liquid or gas associated with flow over a cavity in a solid wall are 
encountered in many engineering installations. Such flows have received extensive study, in 
regard to their external features. Reference [I] has reviewed the experimental investiga- 
tions of flow of a thick boundary layer over a rectangular cavity in the wall of a wind 
tunnel. Reference [2] has experimentally studied supersonic gas flow over a cavity in the 
wall of a two-dimensional channel, with a relative cavity depth to width of from 0.35 to 1.0. 
Reference [3] has presented results of measurement of the velocity of flow of an imcompres- 
sible liquid in a square cavity of width equal to four channel heights, at an incident stream 
Reynolds number of %7.5.103. Below we present results of an experimental and theoretical 
investigation of turbulent flow of an incompressible liquid in rectangular cavities in the 
wall of a two-dimensional channel for a cavity width equal to the channel height, relative 
depths of from I to 3, and Reynolds numbers from I0" to 3.5"I0 s 

I. The turbulent characteristics were measured on an experimental facility, in the 
form of a channel of square section with side H = 0.I m, made of clear plastic. The total 
channel length was 3.5 m. At a distance of 2.5 m from the channel entrance there was a rect- 
angular cavity of extent d = H = 0.I m, and the depth was varied in the range 0.1-0.3 m. The 
air entered the experimental facility from the atmosphere through a smooth entrance section, 
and was drawn in by vacuum pumps. The air velocity on the channel axis was varied from Uo = 
17 to Uo = 60 m/sec with the help of a slide valve located at a distance of I m downstream 
of the cavity. To measure the velocities and the intensity of turbulence we used a constant- 
temperature hot-wire anemometer with a frequency characteristic of 30 kHz. 

The main bulk of the measurements was made in the central plane of the channel. To 
determine the nature of the flow, we made control measurements at various longitudinal sec- 
tions of the cavity. In the test range of Reynolds number, a noticeable breakdown of the 
two-dimensional flow was observed at distances up to 0.1d from the end walls. Taking into 
account what was said above, one can consider the flow to be approximately two-dimensional. 

2. The method of calculation used in this work is based on numerical integration of 
the full system of steady-state Reynolds equations [4] for two-dimensional flow of an in- 
compressible fluid: 

( ) - _ a U  V aU = aP a~u a~u a .  ~ auv  
u - i E  + oy - - i f "  + ~ - 1 ~  + - ~  - ox oy ' 

) - _ OV OV OP ( OzV i~V any ov z 
U ~ 1  + v og = - - f f f  + "  . ~ - ~  + - ~ -  Ox oy ' 

aU av 
+ - - -  = o .  

#x Oy 

(1) 

Trans l a t ed  from I n z h e n e r n o - F i z i c h e s k i i  Zhurnal ,  Vol. 46, No. 3, pp. 363-371, March, 
1984. Or ig ina l  a r t i c l e  submi t ted  January 14, 1983. 
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Here the bar above denotes averaging. Equations (]) do not form a closed system, since 
they contain new unknowns, the Reynolds stresses. To close the system of equations of the 
turbulent motion, we use various models of turbulence, containing empirical quantities. In 
this paper we have used the two-parameter k--c and k-w models [5] and the Boussinesq hypo- 
thesis that the components of the Reynolds stress tensor depend linearly on the rate-of- 
strain tensor of the mean motion: 

-~=_..~..2 k + 2v~ - -  ~z=__~ 2 k +  2VT aV , (2) 
3 Ox 3 9y 

- u v  = ~ ,  + -Ox-x ' ~ "  - ~ - ~  = c ~ 8 ' 

where v T i s  the c o e f f i c i e n t  o f  t u r b u l e n t  v i s c o s i t y .  I t  i s  w e l l  known tha t  these models are 
no t  r i g o r o u s l y  founded and have a number o f  de fec ts ,  but  have been v a l i d a t e d  i n  the c a l c u l a -  
t i o n  o f  a l a rge  number o f  f lows.  M o r e  complex methods o f  c l o s i n g  the Reynolds equat ions ( l )  
were used main ly  i n  c a l c u l a t i n g  f lows o f  boundary - laye r  type.  In  a d d i t i o n ,  c l e a r l y  the d i f -  
f i c u l t i e s  i n  o b t a i n i n g  a s o l u t i o n  increase w i t h  the complex i ty  o f  the model. Therefore,  at 
p resent  the two-parameter model o f  t u rbu lence  w i l l  e v i d e n t l y  s u f f i c e  as a t h e o r e t i c a l  bas is  
f o r  the s tudy o f  separated f lows,  at  l eas t  u n t i l  one obta ins  more accurate exper imenta l  data. 

E l i m i n a t i n g  the pressure from Eq. ( ] ) ,  we w r i t e  the equat ions o f  mot ion i n  stream func-  
t i o n  and v o r t i c i t y  v a r i a b l e s :  

U = O, V =  O* aV OV 
ay ' Ox-x " o = ax av (3) 

Finally, the system of governing equations is written in the form 

0~* + ~* =--m, 
Ox" O# 

a am . .~ o) ~ ( ~ o  o ) ~ o  [<.+~.~} ~ [<. +.. o;} =, ' <.. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o,<~ , )_o  o , )o ,1_o  + ~ ] = s  

<, ( ~  ,,,, o co,,, ,,) o r(-~ + , , )~ ] -< ,  r~ ,,, + , , )~]  : s~ 
us ing the k-~ model. 

For the k--w model the last of Eqs. (4) is replaced by the following: 

o(o, ) o(o, ) or ( , ,  , , , , , , ,]  o [(v, +,,/o,,,] 
Here the S are the source terms of the transport equationsl 

So, = + + 2 .... i - f  - -  + , 
Ox" Oy z Ox ] OxOy , Oy 8x ) Ox Ox Oy Oy 

B 2 
Sk = % F k - - 8  = v , F k - - C o k  V W ,  S, = C,1 --ff v ,Fh--C,~ k-  ) 

, ~ ( c o , / , +  / om 1' ' 
s~ = C.,i,,~F.,--C~,w - r  + C~, -~  v~Fh, F~,= t Ox : t Oy i 

{~247  + u =  v= (o~'/' (or + ov ,,-" o, o, 
F, = 2 I~ Ox ] ' \-~E I t,"-~E ~ ) ' Oy ' Ox 

The va lues  o f  the  model c o n s t a n t s  CD, Ok, ee ,  ew, Ce, ,  C ~ ,  ~ , ,  Cw~, Cw~ were those  recom- 
mended in  [5] .  

As the boundary condition at the impermeable walls, we gave values of the stream func- 
tion $ = ~C. In principle, at the walls we must assign the natural slip conditions for the 
velocity, the equality to zero of value of k, and the condition for w or ~, which follows 
from their definition 
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Fig.  1. D i s t r i b u t i o n  o f  v e l o c i t i e s  i n  the mean sect ions  (a) 
and along the floor (b) and of the intensity of turbulence 
(c) in a cavity with a relative depth of ! : I-3) theory; 4, 
5) experiment; I, 4) Re = 3.5-105; 2, 5) |0s; 3) 104 �9 In 
Fig. icx/d= 0.79; 0.5 and 0.21 (from top to bottom). 

a,k a,k 

e =  v On z , w =  2 0 n  z , (5) 

where  n i s  t h e  d i s t a n c e  no rma l  to  t h e  w a l l ,  

However ,  to  a c c e p t  t h e s e  c o n d i t i o n s  r e q u i r e s  c ha nge s  i n  t h e  t u r b u l e n c e  model  i n  t he  w a l l  
region, where the turbulent viscosity is close to the molecular value, and a considerable re- 
duction of the mesh step size near the wall, and therefore the boundary conditions for all 
the quantities except ~ are displaced by one step size into the flow, where we postulate that 
the universal "law of the wall" holds [4]: 

u* ~. u*$ u* ~- 
U l l n  u*n. + A ,  k = , 8 = ~ ,  w =  ~ ,  (6) 
tz ~" = x "v ~DD xrt C ox9nz 

~. = 0 . 4 1 ,  A = 5 . 3 6 ,  and  u* i s  t h e  dynamic  v i s c o s i t y .  I n t e g r a t i n g  Eq. (6) w i t h  r e s p e c t  t o  n 
from 0 to hc (from the point C on the wall to the nearest point M on the normal to the wall), 
we obtain an approximate value of the liquid flow rate into a layer of height hC: 
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+A-- . ( 7 )  

Hence, knowing the value of @M from Eq. (4), we can determine the value of u*. The vorticity 
at the point M is found by differentiating Eq. (6): 

U* 
mM = - -  - -  sign (r - -  r (8) 

N n  

and kM and eg(WM) are determined from Eq. (5). 

In the flow deceleration region where the "law of the wall" breaks down and thepoint of 
maximum generation of turbulent energy is at a distance from the wall, the quasilaminar con- 
ditions hold: 

_ d8 c dwc 
1 ~ - - 3  r r k c=O,  - -  . . . . .  O. 

~ = ~ c '  mC = 2 h~ ' an dn (9) 

At t h e  c h a n n e l  e n t r a n c e  s e c t i o n  we a s s i g n e d  t h e  v a l u e s  o f  ~,  m, k ,  e c o r r e s p o n d i n g  to  
f u l l y  d e v e l o p e d  t u r b u l e n t  f l ow  (w i th  t he  " 1 / 7 "  l aw) .  At the  e x i t  s e c t i e n  we have  t h e  weak 
b o u n d a r y l c o n d i t i o n s :  t he  l o n g i t u d i n a l  d e r i v a t i v e s  o f  a l l  the  d e p e n d e n t  v a r i a b l e s  a r e  e q u a l  
to  z e r o .  At t h e  p o i n t s  c l o s e s t  to  t he  c o r n e r s ,  we have  s p e c i a l  bounda ry  c o n d i t i o n s  as p r o -  
posed in [6]. 

To obtain a finite-difference approximation the convective terms of Eq. (4) were re- 
placed according to the hybrid scheme of [7], i.e., in the case where the convective terms 
do not exceed the diffusion terms we use central dif{erences, and in the contrary case we 
use one-sided differences "counterflow." The diffusion terms were approximated to second- 
order accuracy. The merit of this scheme is its stability at high Reynolds numbers, but it 
can introduce diffusion additional to the physical "mesh" diffusion for large flow velocities 
and mesh step size, and therefore when using it one should monitor the results of the calcu- 
lations, in terms of the experimental data. We note, however, that the velocities are small 
inside the cavity, and that the scheme has second-order accuracy almost everywhere. The 
system of algebraic equations obtained was solved by the Gauss--Seidel iteration method. The 
dynamic velocity u* was determined from Eq. (7). The calculations were done on the BESM-6 
computer. A nonuniform finite-difference mesh was used, compressed in the regions with rapid 
change of flow characteristics: at the walls and in the layer where the circulating flow 
mixes with the external stream. The minimum mesh step size was 0.02d, and the maximum was 
0.]2d. A comparison of the results obtained with the k--w and k--e models showed that the dif- 
ference between them fell within the experimental error, confirming the conclusion derivedin 
[6] regarding the equivalence of the two-parameter models of turbulence in calculating sepa- 
rated flows. 

3. Figures I and 2 show the flow characteristics in cavities with relative depth h/d = 
| and h/d = 2. As can be seen from Figs. | and 2 the computational model predicts the dis- 
tribution of mean velocities and the energy of turbulence with satisfactory accuracy. The 
theory gives a Reynolds number dependence for the velocity distribution near the wall that 
is weaker than the experimental, possibly due to the use of the "law of the wall." On the 
other hand, some numerical divergence between the calculated and the experimental values of 
the velocities in the wall layers stems from the three-dimensionality of the flow due to 
friction of the vortex on the end walls of the channel, which leads to a small amount of dis- 
agreement in flow rates for the symmetric halves of the cavity section. With the turbulence 
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Fig. 3. Calculated picture of the flow in 
a cavity of depth 3: a) not allowing for 
streamline curvature; b) allowing for stream- 
line curvature; Re = 3.5-I0 5. 

model both experiment and theory show that in cavities with relative depth I and 2 separated 
flow is generated in the form of a single stable vortex. It is known if] that in a rectan- 
gular cavity of relative depth 2 in the wall of a wind tunnel (i.e., in a thick boundary 
layer) two vortices are formed, and therefore the pressure gradient has a stabilizing in- 
fluence on the circulating flow, in spite of the fact that the friction at the walls is 
reduced, which one can determine by comparing the velocities at the walls with the data pre- 
sented in [I]. The influence of the external pressure gradient also shows itself as a reduc- 
tion of the maximum turbulent energy, The velocities at the trailing wall are greater than 
at the leading wall, i.e., the vortex is asymmetric. The intensity of turbulence (referenced 
to the maximum velocity at the entrance channel) remains almost constant within the cavity, 
and increases sharply in the layer of mixing of the circulating flow and the external 
stream. With an increased cavity depth the mean velocities at the walls and the intensity 
of turbulence in the separation region fall off in inverse proportion to the depth; the max- 
imum intensity in the mixing layer remains constant. 

For an increased incident stream Reynolds number the velocities at the wall increase. 
The distribution of energy of turbulence is practically independent of Reynolds number, as is 
shown by calculations in the Re range from 10 ~ to 10 s �9 

4. A special feature of flow in cavities, observed experimentally, is well known if]: 
the loss of stability of a vortex flow with increasing cavity depth, and disintegration of 
the vortex into two vortices rotating in opposite directions. The calcul$tion of flow in a 
cavity of relative depth h/d = 3 according to the classical k--e and k--w models of turbulence 
(Eqs. (4)) has shown that the models cannot describe this phenomenon (a single vortex is 
obtained in the calculation, see Fig. 3a). Calculation of a laminar flow according to the 
same finite-difference scheme gave a picture with two vortices, and therefore the cause of 
the error is an increase of the turbulent viscosity by the turbulence models because they do 
not account for the influence of streamline curvature on the spatial scale of turbulence. 
It is known [8, 9].that the relation between the tuTbulent stress tensor and the velocity 
field of the mean motion in the general case has the form 
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where the ~J ~ are components of the turbulent viscosity tensor. The conventional formulas of 

Eq. (2) are a simplified form of dependence (I0). In two-dimensional turbulent flows, when 
the streamlines of the mean motion have curvature in the (x, y) plane, the structure of tur- 
bulence is altered by the centrifugal and Coriolis accelerations. This effect explains the 
improvement or the loss of stability of the flow field towards longitudinal perturbations. 
The rotation of the flow reduces the Reynolds shear stresses and the corresponding scales of 
turbulence, and also the turbulent energy, if the angular momentum of the motion increases 
with increasing distance from the center of rotation, and it increases them if the angular 
momentum decreases with increasing distance from the center of rotation. Here the tensors 
of the spatial scales of turbulence'and of the turbulent viscosity may become appreciably 
anisotropic, which is not taken into account by Eq. (2) with an isotropic turbulent viscosity. 
A detailed discussion of this matter can be found in ~10]. In [I]], in an example of the cal- 
culation of the boundary layers around a body of revolution it was shown that in the first 
approximation one can account for curvature of the streamlines by adding to the dissipation 
term in the equation for e or w an additional term depending on the derivative of the angular 
momentum with respect to the radius of curvature: 

�9 e ~ s vTFh __ C~,_ (1 --- CcRi) e2 S .  = S; + CcRl ---s C'~, = C~t -~  k ' 

8 3 

Swl  = Sw + Cu,.. w 2 Cc Ri = Cwz%F~-t-  .~u,svTFk --~ - -  Cw~.(1 - - C c  Ri)w '~ 

(11) 
k z Vo 0 (RVo)= 1 Vo 0 

Cc=0,2,  R i =  83 R2 aR- c~w R 2 oR (RVo). 

Here R is the distance to the center of rotation and V 0 is the rotational component of the 
velocity. As can easily be seen, for two-dimensional flow V 0 is the total velocity; R is 
the radius of curvature of the streamline: 

(o o, 
For cavities of depth d and 2d the calculation of the additional term led to some numerical 
change in the results, but this change, however, fell within the experimental error. For a 
cavity of depth 3d a very simple calculation Of the curvature of the streamlines led to a 
qualitative change of the results of the calculations on both models, and gave a flow picture 
with two vortices (Fig. 3b). 
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The calculated profiles of velocity and intensity of turbulence are shown in Fig. 4, 
from which one can see that the velocity at the bottom of the cavity falls sharply, but the 
intensity of turbulence in this case does not remain constant in the separated flow region, 
and increases in the zone of interaction of the two vortices. We also verified a modifica- 
tion of the model, proposed in [12]: 

8 
S,= = S, + C,~Cc, Rh -~' v, Fh, ( ! 3 )  

S,:,., = S~ + C~,Cc, Rit -~- v,F~,  Cc, = 0,03,  

k 1 a 1 1 a 
Ril = - - ( ~ V o )  = 

8 R OR CoF'w R OR 
(RVs), 

but it did not have an appreciable influence on the results of the calculation. Thus, the 
modification of Eq. (II) gives a better description of the influence of streamline curvature 
on the structure of the turbulence. 

We note that the corrections of Eqs. (II) and (13) are purely empirical. For a method 
of computing turbulent flows to have great universality, one must reject the conception of 
an isotropic turbulent viscosity and use relations of the type of Eq. (I0). In our case, 
however, we are restrained from using more complex models by the absence of detailed experi- 
mental data on the characteristics of the flow in cavities of great depth. 

NOTATION 

x, y, Cartesian coordinates; U, V and u, v, average and fluctuating velocity components; 
P, mean static pressure; H, channel height; d, cavity width; h, cavity depth; Uo, maximum 
velocity in a channel of height H; ~, kinematic viscosity; Re = UoH/v, Reynolds number; k, 
energy of turbulence per unit volume; w, square of the characteristic frequency of the tur- 
bulent fluctuations; ~, rate of dissipation of the energy of turbulence; Ri, Richardson 
number. 
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